
MATRIX: Event Logging System for KORA Page 1/19

Michigan State University
Computer Science and Engineering

CSE 498: Collaborative Design

Team MATRIX
Event Logging System for the Kora Archive

Chung-Hi Kim
Dustin Manning

Chris Samiadji-Benthin
Jared Wein

MATRIX: Event Logging System for KORA Page 2/19

Table of Contents
0. Team Introduction...3
1. Software License...3
2. Statement of Problem..4
3. Proposed Solution...5

3.1 Approach..5
3.2 Required Features..7

4. Use Cases..7
5. User Interface...7
6. Classes Used in Implementation ...8

6.1 Manager...8
6.2 ManagerServer..8
6.3 LogGenerator..9
6.4 Parser..9

7. Configuration File..10
8. XML-RPC Background...11
9. Database Schema..12

9.1 Anticipated Schema for filepath database..12
9.2 Database Schema for Manager database...12

10. Parallel Computing Background...13
10.1 Amdahl's Law ...13
10.2 Some Examples...13
10.3 Other Considerations..13

11. Initial Performance Test Results...14
11.1 Test 1...14
11.2 Test 2...14

12. Hardware Requirements...16
13. Software Requirements..16

13.1 Python and extra libraries...16
13.2 Database requirements ..16
13.3 Operating System Requirements..16

14. Project Schedule..17
15. Dictionary...18
16. Additional References...19

MATRIX: Event Logging System for KORA Page 3/19

0. Team Introduction
Chung-Hi Kim <kimchun2@msu.edu>, Webmaster / Developer

Dustin Manning <mannin65@msu.edu>, Developer

Chris Samiadji-Benthin <samiadji@msu.edu>, Client Contact / Manager

Jared Wein <weinjare@msu.edu>, Technical Writer / Developer

1. Software License
This software is under the MIT License:

Copyright © 2008, Michigan State University

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

mailto:kimchun2@msu.edu
mailto:weinjare@msu.edu
mailto:samiadji@msu.edu
mailto:mannin65@msu.edu

MATRIX: Event Logging System for KORA Page 4/19

2. Statement of Problem

MATRIX is Michigan State University's Center for Humane Arts, Letters and Social Sciences

Online. MATRIX, in its mission statement: “seeks to advance critical understanding and

promote access to knowledge through world-class research in humanities technology.” In

keeping with this mission, MATRIX is currently developing a digital archiving system with

content management capabilities called KORA. This system has some specific requirements

it must satisfy in order to be labeled as a digital archive. One of these requirements is an

event recording system that also performs data integrity or 'fixity' tests. While this seems

like a trivial problem to solve at first, the system should scale to thousands of files and

hundreds or thousands of gigabytes of information. The large amount of information that

may be entered into this system poses interesting challenges to the system designers.

An accepted solution to aid in ensuring reliability of data is to store meta-data, or data

about the data. One form of meta-data is a digital signature such as a 'checksum' of the

data. Checksums are small values which can be computed using binary operations to test

the integrity of a piece of data such as a file. A desirable property, for a checksum

algorithm, is an 'avalanche' property- when a single bit in the data is changed the resulting

checksum will be completely different. While checksums can be computed using several

different algorithms- MATRIX is inclined to use the Secure Hash Algorithm (SHA) standard

developed by the National Security Agency. Since the checksum is generally much smaller

than the data itself, it's quite useful to use for comparison because it will be much faster to

compare checksums rather than entire files.

The Event Logging system operates as follows - the system takes in data from a database,

checksums it, and stores the checksum and some identifying information, such as a

filename, in a database. The point of the system is to ensure the data does not degrade

over time. To accomplish this the Event Logging system will intermittently checksum each

data element and create a log file to note any additions, removals, or errors in the archive.

(Author's note: the reader is encouraged to reference the dictionary in section 15 for

clarification of technical terms presented in the following)

MATRIX: Event Logging System for KORA Page 5/19

3. Proposed Solution

3.1 Approach
Since each file can be tested completely independently of any other file, our problem is

considered to be “embarrassingly parallel” or very easy to implement as a parallel

computation. It's useful to visualize the problem of testing archive integrity, by computing

independent checksum on files, as the dividing of labor across multiple agents or 'Workers'.

The task of dividing up the labor is performed by a 'Manager' who passes out work to each

'Worker'. In our case this division of labor is performed by passing filenames to each

'Worker' which then retrieve the files over a network drive, compute the checksum, and

then return the checksums to the 'Manager'. We decided to utilize the Python programming

language to implement this solution as Parallel Python is a tremendously useful library for

helping us in abstracting out the client server interaction between the Manager and Worker

machines. Parallel Python requires us only to define the checksum function to pass to the

Worker machines and provide the data needed to perform the checksum computation.

The following diagram idealizes the division of labor across N machines.

To obtain the filename and filepath information, our system must interact with a filepath

server which is part of Matrix's Kora Archive. This component will, ideally, be located on the

same machine as the Manager and the file information will be accessible via a simple

MySQL query from the Manager. The data itself, will be stored in a Disk Array: MATRIX

uses a RAID 5 configuration for the Kora Archive which spreads the data across multiple

disks. The data will be accessible to the Workers via a network drive, such as SAMBA or

NFS.

MATRIX: Event Logging System for KORA Page 6/19

Our system is designed to handle an arbitrary number of Workers. If there are no remote

Worker machines available, the Manager machine can act as Worker. To execute a fixity

test on the archive, the administrator must start a server instance on each potential

Worker machine and then run the Manager program. Once the Manager has the filepaths of

the Kora archive, it can begin distributing filepaths to the Worker machines, collecting the

results upon completion.

This arrangement can be idealized by the following diagram.

MATRIX: Event Logging System for KORA Page 7/19

3.2 Required Features
The system will have these accepted features:

● Be platform-independent

 Support MySQL

 Support remote procedure calls

 API for making remote procedure calls

 Allow different checksum algorithms to be utilized

 Human-readable configuration file in XML

 Command Line User Interface

 Generate text files for log events

4. Use Cases
There are essentially 4 use cases supported by the Event Logging System:

1. Run a single fixity test and generate any 'error' or 'failed to open file' events.

2. Run multiple fixity tests according to a schedule in the configuration file, generating

any 'error' or 'failed to open file' events.

3. Add a file: checksum and new file and record it to the database and generate an

'added' or 'failed to open file' log event.

4. Remove a file: remove the file's record from the archive and generate a 'removed'

log event.

All these use cases can be performed either via the command line interface or via remote

procedure calls from a separate client.

5. User Interface
The user interface features the following simple options:

1. Run a Fixity Test

2. Run the Scheduled Test

3. Add a File

4. Remove a File

5. Listen for XML-RPC Commands

MATRIX: Event Logging System for KORA Page 8/19

6. Classes Used in Implementation

6.1 Manager
The Manager class is the main component of the project. This object will run fixity checks

on administrator command (or on a preset schedule). When the Manager is called to

execute a fixity test, the Manager will test all the Worker nodes it detects for availability

ignoring those which aren't functional. The Manager will then retrieve file paths from the

Kora server for the test. Workers that become unavailable as the fixity test is occurring will

no longer receive filenames to checksum. When the fixity test is completed, the Manager

will dump all of the events it has recorded during the test into log files. The following log

messages are generated:

1. FAILED TO OPEN: meaning that a file couldn't be opened during the
fixity test.

2. ERROR: meaning the checksums don't match between the stored checksum
value and the current checksum computed from the file in its present
state.

3. ADDED: a new file was added to the archive.
4. REMOVED: a file was removed from the archive.

The Worker is actually a function in the Manager class called computeChecksums(filename,

workerToFilepath, algorithm). This function basically takes in the filename, a dictionary

relating the Worker's IP address to the filepath to the network drive with which it will

retrieve files and the type of SHA checksum algorithm to use.

The Manager also provides methods for updating its own local database of checksums in

case files have been removed or added by an administrator.

Also included is a scheduling component which will allow for jobs to be performed at

administrator configured intervals- for example: every 40 days at 1900.

Email functionality is also implemented on the Manager to provide test completion

notification but this functionality depends on the existence of an available SMTP mail server

for use.

6.2 ManagerServer

The ManagerServer is used for direct remote procedure calls, it utilizes an XML-RPC server

MATRIX: Event Logging System for KORA Page 9/19

to listen to client commands over HTTP for adding files, removing files and performing

fixity tests.

6.3 LogGenerator

The LogGenerator is used to generate the Event log for the system. The class is relatively

trivial as the actual Events are generated in the Manager- essentially its sole purpose it to,

on Manager command, take a list of events and save them to text files.

6.4 Parser

This class is responsible for parsing the XML configuration file. Also if the configuration file

has been erased, it can generate a new template for the file- the administrator, however, is

responsible for correctly configuring the system.

MATRIX: Event Logging System for KORA Page 10/19

7. Configuration File
Configuration of the Kora Event Logging system is done using an XML file, called
'config.xml', in the following format:

<?xml version="1.0" ?>

<config>

<setup algorithm="sha512" email_host='mail.msu.edu' log_size="5"/>

<schedule run_job_every_x_days="40" job_start_time="1900"
check_db_every_x_minutes="5"/>

<worker IP="35.9.22.153" path="Z:\" port="60000" />

<worker IP="35.9.22.158" path="/home/administrator/Desktop/matrix/"
port="70000" />

<worker IP="35.9.22.111" path="/home/administrator/Desktop/matrix/"
port="70000" />

<worker IP="35.9.22.112" path="/home/administrator/Desktop/matrix/"
port="70000" />

<worker IP="35.9.22.104" path="/home/administrator/Desktop/matrix/"
port="70000" />

<database URL="35.9.22.104" dbname="matrix_pathdb" password="kora5"
table="paths" username="matrix_dbuser" filename="path" size="filesize"/>

<notify email="samiadji@msu.edu" />

</config>

There are only 5 XML elements in the configuration file:

1. setup: this element has attributes for selecting the algorithm, the size of the log
files (in kilobytes), and the email host which will allow the Logging System to email
administrator when a fixity test is complete.

2. schedule: has attributes for selecting the frequency, in days, of fixity test runs, the
start time on the day of a fixity test

3. worker: has attributes for the IP address of the worker machine, which port the
Worker is listening on, and the local path for the network drive

4. database: has attributes for the URL of the database, the database name, the user
name and password for accessing it, the table name, as well the name of the
columns which specify the filename and the file size.

5. notify: has an email attribute to specify whom to email upon completion of a fixity
test.

MATRIX: Event Logging System for KORA Page 11/19

8. XML-RPC Background
To provide communication facilities between the Manager and the administrator, via the

ManagerServer, we provided a programming-language independent interface to allow

remote procedures to be requested for the Manager to execute. To accomplish this, we

used XML-RPC.

1. XML-RPC is also platform independent so that even if the server runs on Linux and

the client runs on Windows, the two processes can communicate with each other.

2. Also XML-RPC is language independent, this is of note as Kora as implemented in a

different programming language than our Event Logging System.

3. XML-RPC uses HTTP as a transport layer and XML as the encoding. We will

implement the ManagerServer using the Python SimpleXMLRPCServer library, which

abstracts the XML formatting out to remove another layer of complexity.

A sample method call rendered in XML as would be used in XML-RPC follows:

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><i4>40</i4></value>
 </param>
 </params>
</methodCall>

A sample method response rendered in XML as would be used in XML-RPC follows:
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>South Dakota</string></value>
 </param>
 </params>
</methodResponse>

MATRIX: Event Logging System for KORA Page 12/19

9. Database Schema
Our solution depends on the use of two separate databases. The filepath database is a

database that exists on the Kora Server and is expected to provide at least the filenames

for all the data in the Kora Archive. 'managerdb' is a database that is part of the Manager-

it will store the checksum values for each file in the Kora Archive.

9.1 Anticipated Schema for filepath database
The filepath database is not under our control, and thus we can only provide an expected

database schema for our solution. However, since our interface to the Kora Archive filepath

database is configurable, the particular name of the attributes is unimportant as an

administrator can configure them appropriately.

● Primary Key: can be anything

● filesize: the size of the file

● filename: the name of the file

9.2 Database Schema for Manager database
The Manager contains its own database that will store a table with the stored checksums

and the filename that goes with them:

● Primary Key: <filename>_<algorithm>

● Algorithm: the type of algorithm used

● Filename: the name of the file

● Checksum: the computed checksum

● Timestamp: the month, day, year, hour, minute the checksum was first computed

MATRIX: Event Logging System for KORA Page 13/19

10. Parallel Computing Background

10.1 Amdahl's Law
The key law, with regards to parallel computing, is Amdahl's Law which states that the

increase in speedup in using a parallel computing system is directly proportional to the

amount of computation which can be performed in parallel on the original system and

number of CPUs available for the parallel computation. Specifically:

max speedup = 1/((1-P)+P/N)

where P is the percentage of the computation which can be

performed in parallel and N is the number of Workers

10.2 Some Examples
If there is no speedup using parallel computation then P=0, then:

max speedup = 1/((1-0)+0/N) = 1

If there is maximum speedup using parallel computation then P=1, then:
max speedup = 1/((1-1)+1/N) = 1/(1/N) = N

10.3 Other Considerations
A corollary to Amdahl's Law is Amdahl's Rule of Thumb which states that 1 byte of memory

and 1 byte/second of input/output (I/O) are required for each instruction/second supported

by the computer. In practice this means, that there must be enough bandwidth to support

computation and that while the CPU itself may be fast enough, disk I/O or network

bandwidth may become a bottleneck and reduce performance. Since our system is design

to pull files over network drives high network bandwidth and good data availability is a

must.

MATRIX: Event Logging System for KORA Page 14/19

11. Initial Performance Test Results

11.1 Test 1
For our first test we used 12 Gigabytes of randomly generated data in files sized between

12 Kilobytes to 60 Megabytes. This data was located on a single server. We went to the

Business College and used one of their labs to set up the Workers. Our typical network

bandwidth was about 15 Megabytes/sec from the server. We used between 3 to 11

machines with two Workers processes per machine or between 6 to 22 workers.

The first test gave us a poor result: the amount of time it took to checksum the data

increased slightly when the number of Workers was increased. We attributed this to having

Workers all attempting to open files at the same time on the same server and saturating

the bandwidth of that server such that the handling of too many multiple request

decreased effective bandwidth and thus decreased performance.

11.2 Test 2
For our second test: we used slightly more data and split the data across 3 servers instead

1 6 11 16 21 26

0

2

4

6

8

10

12

14

16

18

20

Test Results for 12 Gb of Data and 1 Server

Total Number of Workers

Time Elapsed
(in minutes)

MATRIX: Event Logging System for KORA Page 15/19

of a single server thus tripling our effective network bandwidth. Again we used the

Business College as our test lab with typical bandwidth 15 Megabytes/sec from the servers.

We used between 1 to 11 machines with the same 2 Worker processes per machine, i.e.

2-22 Workers.

Our results show that the run time now decreases as the number of Workers increases but

only up to a point. There is a Law of Diminishing Returns here- considering Amdahl's Law,

if the non-parallel component of the program is significant then after a certain point there

will be no substantial increases in performance. Our maximum speed up here is a factor of

2.

To determine roughly how much of our system is parallelized on the second test we work

backwards using Amdahl's Law:

Max speed up is:

2 = 1/((1-P)+P/N) with N=14 Workers minimum

2 = 1/((1-P)+P/14)

2[(1-P)+P/14] = 1

2-2P+2P/14 = 1

-1.86P = -1

P = 1/1.86 = ~.54 thus approximately 54% of our

program is parallelized given this particular setup.

1 6 11 16 21 26

0

2

4

6

8

10

12

Test Results for 13.5 Gb of Data and 3 Servers

Total Number of Workers

Time Elapsed
(in minutes)

MATRIX: Event Logging System for KORA Page 16/19

12. Hardware Requirements
The Event Logging system requires that the data to be tested must be available either in

situ or through network drives for all machines used in the system.

● Ethernet connections

● Server Computer

● Client Computers

13. Software Requirements

13.1 Python and extra libraries
The software requirements for our system are minimal. As a team, we have decided upon

developing our solution with a platform-independent language. Python was chosen as a

platform-independent language that will scale to our needs, and gives us XML-RPC and

hashing as built-in libraries. Due to our use of Python, we require that a Python interpreter

be installed on the system. The Python software need to run this Event Logging System

includes:

● Python 2.5.1 (www.python.org) , the Python interpreter

● Parallel Python 1.5.3 (www.parallelpython.com) , distributed computing support

● python-adodb (adodb.sourceforge.net) , generic database support

● python-mysqldb (mysql-python.sourceforge.net) , MySQL specific database support

13.2 Database requirements
Our system is designed to interact with a MySQL database which stores the filenames of

the data in the archive. Also our Event Logging System maintains an SQLite database in a

file- Python provides support for this natively.

13.3 Operating System Requirements
There is no specific operating system requirement, with the exception that there must be a

Python-interpreter implemented along with the above software installed for the specific

operating system. Python interpreters have been implemented for the following major

operating systems:

● Microsoft Windows

● Apple Macintosh

● Linux

http://www.parallelpython.com/
http://www.python.org/

MATRIX: Event Logging System for KORA Page 17/19

14. Project Schedule

Week Task

Jan 21 -Find right distributed framework, prototyping, presentation slides
(Dustin)
-XML-RPC documentation (Kim)
-Communication With Matt G., coordination of personnel,
prototyping (Chris)
-Documentation (Jared)

Jan 28 DEADLINE: Presentation with slides and tech-spec (all hands)
-Continue prototyping (Dustin)
-Decide on distributed framework (Chris, Dustin)
-Client meeting (Chris)

Feb 4 -Begin coding alpha: distributed portion (Chris, Dustin)
-Begin coding alpha: database interface, schema, file path issues (Kim,
Jared)
-Client meeting (Chris)

Feb 11 -Continue coding respective portions of alpha (all hands)
-Client meeting (Chris)

Feb 18 DEADLINE: alpha ready for demo. Should have distributed portion
working in command line and database interface to test data set.
-Continue coding for beta, debugging (all hands)
-Collect benchmarking data for scalability (all hands)
-Client meeting (Chris)

Feb 25 SOFT DEADLINE: beta finished.
-Finish up last few beta issues (Chris, Justin)
-Begin API documentation for client (Chris, Justin)
-Collect benchmarking data for scalability (all hands)
-Client meeting (Chris)

Mar 3 -Spring break

Mar 10 DEADLINE: Progress Report & Demo (Chris)
-Continue working on API documentation (Chris, Dustin)
-Client Meeting (Chris)

Mar 17 DEADLINE: Beta finished & Presentation (all hands)
SOFT DEADLINES: API documentation finished
-Begin working on project video (All hands)
-Client Meeting (Chris)

Mar 24 -Debugging (all hands)
-Continue Working on Video (all hands)
-Client Meeting (Chris)

Apr 7 -Collect benchmarking data for scalability (all hands)
-Continue Working on Video (all hands)
-Client Meeting (Chris)

Apr 14 DEADLINE: Final Demo and Presentation (all hands)
-Debugging (all hands)
-Client Meeting (Chris)

Apr 21 DEADLINE: Demo Video (all hands)
DEADLINE: Debugging Finished (all hands)
Design Day Demo (all hands)

MATRIX: Event Logging System for KORA Page 18/19

15. Dictionary
ADOdb – a layer of abstraction for programming languages, such as Python, to allow the

use of different database architectures.

Checksum – a bit string generated by performing certain binary operations on files, this is

used to test for correctness of data. The checksum is usually much smaller than the

original data.

Distributed Computing – using multiple computers to perform a computation.

Fixity Check – comparing two checksums to see if they are different. A fixity check fails if

they are different and can show if the data has degraded.

HTTP – HyperText Transport Protocol

MATRIX – Michigan State University's award winning, world class, humanities and

technology research center. The mission of MATRIX is to serve as a catalyst for and

incubator of the emerging fields and disciplines resulting from the integration of the

humanities with information technologies.[1]

MySQL – An open source database which is wide use.[2]

NFS – Network File Share: this is a protocol to allow for sharing of files across a network

using a network drive.

OPEN SSL – An open source implementation of the Secure Sockets Library (SSL) and its

predecessor the Transport Security Layer (TSL). These protocols were developed to ensure

privacy in network communications by using encryption an such.[3]

Platform Independence – The ability to run the software on any major operating system

platform, such as Linux, Microsoft Windows, or Mac OS.

Python – an interpreted language used in programming for web pages, mathematics,

distributed computing, networking, and other application areas. [4]

RAID – Redundant Array of Inexpensive or Independent Disks, is technology for storing

data across hard disks to ensure reliability. There are several versions with different

features such as parity checking, mirror copies of files, or having a backup disk.

SAMBA – Shared Memory Block, this is a standard protocol for sharing files across a

network through a network drive.

SHA – Secure Hashing algorithm. A set of algorithms used to generate checksums on data.

The algorithms are available in 160, 224, 256, 384, and 512 bit flavors.

MATRIX: Event Logging System for KORA Page 19/19

SMTP – Simple Mail Transfer Protocol, a protocol for sending email over the Internet.

SQL – Structured Query Language, a standard database language used for creating, using,

and searching through databases.

SQLite – A lightweight version of the SQL database, designed for simplicity.[5]

URL – Uniform Resource Locater

XML – eXtensible Markup Language, a human and machine readable text format.

XML-RPC - a specification and a set of implementations that allow software running on

disparate operating systems, running in different environments to make procedure calls

over the Internet. It can be used for remote procedure calling using HTTP as the transport

and XML as the encoding. XML-RPC is designed to be as simple as possible, while allowing

complex data structures to be transmitted, processed and returned.[6]

[1] www.matrix.msu.edu

[2] www.mysql.com

[3] www.openssl.org

[4] www.python.org

[5] www.sqlite.org

[6] www.xmlrpc.com

16. Additional References
● http://docs.python.org/lib/module-SimpleXMLRPCServer.html

● http://en.wikipedia.org/wiki/Amdahl's_law

● http://en.wikipedia.org/wiki/XML-RPC

● http://matrix.msu.edu/

● http://parallelpython.com/

● http://python.org/

● http://theserverside.com/tt/articles/content/DistCompute/figure1.jpg

● http://xmlrpc.com/

http://www.xmlrpc.com/
http://www.theserverside.com/tt/articles/content/DistCompute/figure1.jpg
http://python.org/
http://www.parallelpython.com/
http://matrix.msu.edu/
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/Amdahl's_law
http://docs.python.org/lib/module-SimpleXMLRPCServer.html
http://www.xmlrpc.com/
http://www.sqlite.org/
http://www.python.org/
http://www.openssl.org/
http://www.mysql.com/
http://www.matrix.msu.edu/

	0. Team Introduction
	1. Software License
	2. Statement of Problem
	3. Proposed Solution
	3.1 Approach
	3.2 Required Features

	4. Use Cases
	5. User Interface
	6. Classes Used in Implementation
	6.1 Manager
	6.2 ManagerServer
	6.3 LogGenerator
	6.4 Parser

	7. Configuration File
	8. XML-RPC Background
	9. Database Schema
	9.1 Anticipated Schema for filepath database
	9.2 Database Schema for Manager database

	10. Parallel Computing Background
	10.1 Amdahl's Law
	10.2 Some Examples
	10.3 Other Considerations

	11. Initial Performance Test Results
	11.1 Test 1
	11.2 Test 2

	12. Hardware Requirements
	13. Software Requirements
	13.1 Python and extra libraries
	13.2 Database requirements
	13.3 Operating System Requirements

	14. Project Schedule
	15. Dictionary
	16. Additional References

